Лампа накаливания. Все что вы не знали о первой лампе накаливания Нить накаливания в электрической лампочке

Лампа накаливания — осветительный прибор, искусственный источник света. Свет испускается нагретой металлической спиралью при протекании через неё электрического тока.

Принцип действия

В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока. Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное излучение в соответствии с законом Планка . Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина ). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 6000 K (температура поверхности Солнца ). Чем меньше температура, тем меньше доля видимого света и тем более «красным» кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Идеальная температура в 6000 K недостижима, т. к. при такой температуре любой материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления — вольфрам (3410 °C) и, очень редко, осмий (3045 °C).

При практически достижимых температурах 2300—2900 °C излучается далеко не белый и не дневной свет. По этой причине лампы накаливания испускают свет, который кажется более «желто-красным», чем дневной свет. Для характеристики качества света используется т. н. цветовая температура.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине вольфрамовая нить защищена стеклянной колбой, заполненной нейтральным газом (обычно аргоном). Первые лампочки делались с вакуумированными колбами. Однако в вакууме при высоких температурах вольфрам быстро испаряется, делая нить тоньше и затемняя стеклянную колбу при осаждении на ней. Позднее колбы стали заполнять химически нейтральными газами. Вакуумные колбы сейчас используют только для ламп малой мощности.

Конструкция

Лампа накаливания состоит из цоколя, контактных проводников, нити накала, предохранителя и стеклянной колбы, ограждающей нить накала от окружающей среды.

Колба

Стеклянная колба защищает нить от сгорания в окружающем воздухе. Размеры колбы определяются скоростью осаждения материала нити. Для ламп большей мощности требуются колбы большего размера, для того чтобы осаждаемый материал нити распределялся на большую площадь и не оказывал сильного влияния на прозрачность.

Буферный газ

Колбы первых ламп были вакуумированы. Современные лампы заполняются буферным газом (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Это уменьшает скорость испарения материала нити. Возникающие при этом, за счёт теплопроводности, потери тепла, уменьшают путём выбора газа по возможности с наиболее тяжелыми молекулами. Смеси азота с аргоном являются принятым компромиссом в смысле уменьшения себестоимости. Более дорогие лампы содержат криптон или ксенон (атомные веса: азот: 28,0134 г/моль; аргон: 39,948 г/моль; криптон: 83,798 г/моль; ксенон: 131,293 г/моль)

Нить накала

Нить накала в первых лампочках делалась из угля (точка сублимации 3559 °C). В современных лампочках применяются почти исключительно спирали из осмиево-вольфрамового сплава. Провод часто имеет вид двойной спирали, с целью уменьшения конвекции за счёт уменьшения ленгмюровского слоя.

Лампы изготавливают для различных рабочих напряжений. Сила тока определяется по закону Ома (I = U / R) и мощность по формуле P=U\cdot I, или P = U2 / R. При мощности 60 Вт и рабочем напряжении 230 В через лампочку должен протекать ток 0,26 А, т. е. сопротивление нити накала должно составлять 882 Ома. Т. к. металлы имеют малое удельное сопротивление, для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампочках составляет 40—50 микрон.

Т. к. при включении нить накала находится при комнатной температуре, её сопротивление много меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в два-три раза больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу — при нагревании их сопротивление уменьшалось, и свечение медленно нарастало.

В мигающих лампочках последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампочки самостоятельно работают в мигающем режиме.

Цоколь

Форма цоколя с резьбой обычной лампы накаливания была предложена Томасом Альвой Эдисоном . Размеры цоколей стандартизированы.

Предохранитель

Плавкий предохранитель (отрезок тонкой проволоки) расположен в цоколе лампы накаливания, предназначен для предотвращения возникновения электрической дуги в момент перегорания лампы. Для бытовых ламп с номинальным напряжением 220 В такие предохранители обычно рассчитаны на ток 7 А.

КПД и долговечность

Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне, и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K КПД составляет 5 %.

С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. При увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим уменьшается время жизни на 95 %.

Уменьшение напряжения в два раза (напр. при последовательном включении) хотя и уменьшает КПД, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда надо обеспечить надежное дежурное освещение без особых требований к яркости, например, на лестничных площадках.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.

Галогенные лампы

Добавление в буферный газ галогенов брома или йода повышает время жизни лампы до 2000—4000 часов. При этом рабочая температура составляет примернно 3000 К. Эффективность галогенных ламп достигает 28 лм/Вт.

Иод (совместно с остаточным кислородом) вступает в химическое соединение с испарившимися атомами вольфрама. Этот процесс является обратимым — при высоких температурах соединение распадается на составляющие вещества. Атомы вольфрама высвобождаются таким образом либо на самой спирали, либо вблизи неё.

Добавление галогенов предотвращает осаждение вольфрама на стекле, при условии, что температура стекла больше 250 °C. По причине отсутствия почернения колбы, галогенные лампы можно изготавливать в очень компактном виде. Маленький объём колбы позволяет, с одной стороны, использовать большее рабочее давление (что опять же ведёт к уменьшению скорости испарения нити) и, с другой стороны, без существенного увеличения стоимости заполнять колбу тяжелыми инертными газами, что ведёт к уменьшению потерь энергии за счёт теплопроводности. Всё это удлиняет время жизни галогенных ламп и повышает их эффективность.

Ввиду высокой температуры колбы любые загрязнения поверхности (например, отпечатки пальцев) быстро сгорают в процессе работы, оставляя почернения. Это ведёт к локальным повышениям температуры колбы, которые могут послужить причиной её разрушения. Также из-за высокой температуры, колбы изготавливаются из кварца.

Новым направлением развития ламп является т. н. IRC-галогенные лампы (сокращение IRC обозначает «инфракрасное покрытие»). На колбы таких ламп наносится специальное покрытие, которое пропускает видимый свет, но задерживает инфракрасное (тепловое) излучение и отражает его назад, к спирали. За счёт этого уменьшаются потери тепла и, как следствие, увеличивается эффективность лампы. По данным фирмы OSRAM, потребление энергии снижается на 45 %, а время жизни удваивается (по сравнению с обычной галогенной лампой).

Хотя IRC-галогенные лампы не достигают эффективности ламп дневного света, их преимущество состоит в том, что они могут использоваться как прямая замена обычных галогенных ламп.

Специальные лампы

    Проекционные лампы — для диа- и кинопроекторов. Имеют повышенную температуру нити (и соответственно, повышенную яркость и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.

    Двухнитевые лампы для автомобильных фар. Одна нить для дальнего света, другая для ближнего. Кроме того, такие лампы содержат экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей.

История изобретения

    В 1854 г. немецкий изобретатель Генрих Гебель разработал первую «современную» лампочку: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампочкой.

    11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд

    Английский изобретатель Джозеф Вильсон Сван получил в 1878 г. британский патент на лампу с угольным филаментом. В его лампах филамент находился в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.

    Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу в которой он пробует в качестве нити различные металлы. В конце-концов он возвращается к угольному волокну и создаёт лампочку с временем жизни 40 часов. Несмотря на столь непродолжительное время жизни его лампочки вытесняют использовавшееся до тех пор газовое освещение.

    В 1890-х годах Лодыгин изобретает несколько типов ламп с металлическими нитями накала.

    В 1906 г. Лодыгин продаёт патент на вольфрамовую нить компании General Electric. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.

    В 1910 г. Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.

    Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным Ирвингом Ленгмюром , который, работая с 1909 г. в фирме General Electric , придумал наполнять колбы ламп инертным газом, что существенно увеличило время жизни ламп.

Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.

По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы - так появились галогеновые лампы. Вольфрам - термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.

История создания

Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им - неправильно.

Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:

  1. Поиски лучшего материала для нити накаливания. Нужно было найти такой материал, который одновременно был устойчив к возгоранию и характеризовался высоким сопротивлением. Первая нить была создана из волокон бамбука, которые покрывались тончайшим слоем графита. Бамбук выступал в качестве изолятора, графит - токопроводящей среды. Поскольку слой был малым, то существенно возрастало сопротивление (что и требовалось). Все бы хорошо, но древесная основа угля приводила к быстрому воспламенению.
  2. Далее исследователи задумались над тем, как создать условия строжайшего вакуума, ведь кислород - важный элемент для процесса горения.
  3. После этого нужно было создать разъемные и контактные компоненты электрической цепи. Задача усложнялась из-за использования слоя графита, характеризующегося высоким сопротивлением, поэтому ученым пришлось использовать драгоценные металлы - платину и серебро. Так повышалась проводимость тока, но стоимость изделия была чересчур высока.
  4. Примечательно, что резьба цоколя Эдисона используется и по сей день - маркировка E27. Первые способы создания контакта включали пайку, но при таком раскладе сегодня говорить о быстро заменяемых лампочках было бы сложно. А при сильном нагреве подобные соединения быстро бы распадались.

В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока - до 40 %.

Вспомните учебный курс - еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр - несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

Строение

Обычная лампа состоит из следующих конструктивных элементов:

  • колба;
  • вакуум или инертный газ, закачиваемый внутрь нее;
  • нить накала;
  • электроды - выводы тока;
  • крючки, необходимые для удерживания нити накала;
  • ножка;
  • предохранитель;
  • цоколь, состоящий из корпуса, изолятора и контакта на донышке.

Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.

Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение - защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.

Колба

Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.

Газовая среда

Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.

В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.

Нить накала

По форме нить накаливания может быть разной - выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже - ленточные проводники.

Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.

Технические характеристики

Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны - до 75 Вт световая отдача увеличивается, при превышении - снижается.

Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.

Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель - у изделий мощностью 40 Вт.

Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.

Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.

При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.

Эксплуатационные параметры

При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.

Виды

Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.

В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):

  • вакуумные;
  • аргоновые или азот-аргоновые;
  • криптоновые;
  • ксеноновые или галогенные с установленным отражателем инфракрасного излучения внутрь лампы, что увеличивает КПД;
  • с покрытием, предназначенным для преобразования инфракрасного излучения в видимый спектр.

Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:

  1. Общее назначение - в 70-х гг. прошлого столетия они назывались «нормально-осветительными лампами». Самая распространенная и многочисленная категория - изделия, применяемые для общего и декоративного освещения. С 2008 года выпуск таких источников света существенно сократился, что было связано с принятием многочисленных законов.
  2. Декоративное назначение. Колбы таких изделий выполняются в форме изящных фигур. Чаще всего встречаются свечеобразные стеклянные сосуды с диаметром до 35 мм и сферические (45 мм).
  3. Местное назначение. По конструкции идентичны первой категории, но питаются от уменьшенного напряжения - 12/24/36/48 В. Обычно применяются в переносных светильниках и приборах, освещающих верстаки, станки и т. п.
  4. Иллюминационные с окрашенными колбами. Зачастую мощность изделий не превышает 25 Вт, а для окрашивания внутренняя полость покрывается слоем неорганического пигмента. Гораздо реже можно встретить источники света, наружная часть которых окрашивается цветным лаком. В таком случае пигмент очень быстро выцветает и осыпается.

  1. Зеркальные. Колба выполнена в специальной форме, которая покрыта отражающим слоем (к примеру, методом распыления алюминия). Данные изделия используются для перераспределения светового потока и повышения эффективности освещения.
  2. Сигнальные. Их устанавливают в светосигнальные изделия, предназначенные для отображения какой-либо информации. Характеризуются низкой мощностью и рассчитаны на продолжительную эксплуатацию. На сегодняшний день практически бесполезны из-за доступности светодиодов.
  3. Транспортные. Еще одна обширная категория ламп, используемых в транспортных средствах. Характеризуются высокой прочностью, устойчивостью к вибрациям. В них применяют специальные цоколи, гарантирующие прочное крепление и возможность быстрой замены в стесненных условиях. Могут питаться от 6 В.
  4. Прожекторные. Высокомощные источники света до 10 кВт, характеризующиеся высокой световой отдачей. Спираль укладывается компактно, чтобы обеспечить лучшую фокусировку.
  5. Лампы, применяемые в оптических приборах, - к примеру, кинопроекционная или медицинская техника.

Специальные лампы

Также существуют более специфические разновидности ламп накаливания:

  1. Коммутаторные - подкатегория сигнальных ламп, применяемых в коммутаторных панелях и выполняющих функции индикаторов. Это узкие, продолговатые и малогабаритные изделия, имеющие параллельные контакты гладкого типа. За счет этого могут помещаться в кнопки. Маркируются как «КМ 6-50». Первое число указывает на вольтаж, второе - ампераж (мА).
  2. Перекальная, или фотолампа. Данные изделия используются в фототехнике для нормированного форсированного режима. Характеризуется высокими световой отдачей и цветовой температурой, но малым сроком эксплуатации. Мощность советских ламп достигала 500 Вт. В большинстве случаев колба матируется. Сегодня практически не используются.
  3. Проекционные. Применялись в диапроекторах. Высокая яркость.

Двухнитевая лампа бывает нескольких разновидностей:

  1. Для автомобилей. Одна нить используется для ближнего, другая - для дальнего света. Если рассматривать лампы для задних фонарей, то нити могут использоваться для стоп-сигнала и габаритного огня соответственно. Дополнительный экран может отсекать лучи, которые в лампе ближнего света могут слепить водителей встречных автомобилей.
  2. Для самолетов. В посадочной фаре одна нить может использоваться для малого света, другая - для большого, но требует внешнего охлаждения и непродолжительной эксплуатации.
  3. Для железнодорожных светофоров. Две нити необходимы для повышения надежности - если перегорит одна, то будет светиться другая.

Продолжим рассматривать специальные лампы накаливания:

  1. Лампа-фара - сложная конструкция для подвижных объектов. Используется в автомобильной и авиационной технике.
  2. Малоинерционная. Содержат тонкую нить накаливания. Применялась в звукозаписывающих системах оптического типа и в некоторых видах фототелеграфа. В наше время используется редко, поскольку есть более современные и улучшенные источники света.
  3. Нагревательная. Применяется в качестве источника тепла в лазерных принтерах и копирах. Лампа имеет цилиндрическую форму, закрепляется во вращающемся металлическом валу, к которому прикладывается бумага с тонером. Вал передает тепло, что приводит к расплыванию тонера.

КПД

Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья - на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД - 5 %.

Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К - в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.

Плюсы и минусы

С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.

Преимущества:

  • низкая стоимость;
  • нет необходимости в применении дополнительных приспособлений;
  • простота использования;
  • комфортная цветовая температура;
  • устойчивость к повышенной влажности.

Недостатки:

  • недолговечность - 700–1000 часов при соблюдении всех правил и рекомендаций по эксплуатации;
  • слабая световая отдача - КПД от 5 до 15 %;
  • хрупкая стеклянная колба;
  • возможность взрыва при перегреве;
  • высокая пожарная опасность;
  • перепады напряжения существенно сокращают срок эксплуатации.

Как увеличить срок службы

Существует несколько причин, по которым может уменьшиться срок эксплуатации данных изделий:

  • перепады напряжения;
  • механические вибрации;
  • высокая температура окружающей среды;
  • разрыв соединения в проводке.
  1. Выберите изделия, которые подходят для диапазона напряжения сети.
  2. Перемещение осуществляйте строго в выключенном состоянии, поскольку из-за малейших вибраций изделие выйдет из строя.
  3. Если лампы продолжают перегорать в одном и том же патроне, то его нужно заменить или починить.
  4. При эксплуатации на лестничной площадке в электрическую цепь добавьте диод или включите параллельно две лампы одной мощности.
  5. На разрыв цепи питания можно добавить устройство для плавного включения.

Технологии не стоят на месте, постоянно развиваются, поэтому сегодня на смену традиционным лампам накаливания пришли более экономичные и долговечные светодиодные, люминесцентные и энергосберегающие источники света. Главными причинами выпуска ламп накаливания остается наличие менее развитых с технологической точки зрения стран, а также хорошо налаженное производство.

Приобретать такие изделия сегодня можно в нескольких случаях - они хорошо вписываются в дизайн дома или квартиры, либо вам нравится мягкий и комфортный спектр их излучения. Технологически - это давно устаревшие изделия.

После замыкания цепи (например, при нажатии выключателя) электрический ток начинает проходить через тело накала, которое при достижении определенной температуры испускает видимое человеческим глазом излучение. При достижении температуры 570 о С человек способен увидеть в темноте излучаемое телом красное свечение, а стандартная рабочая температура нити в лампе накаливания находится в пределах 2000-2800 °C. Чем меньше температура тела накаливания, тем более «красным» будет выглядеть излучение (подробнее о цветопередаче написано в статье). Чтобы лучше понять принцип работы обычной лампочки, необходимо разобраться в конструкции и обязательных элементах, к которым относится колба, тело накала и токовводы.

Стандартная лампочка имеет грушевидную форму и состоит из следующих частей:

  • Колба . Изготавливается из натриево-кальциевого силикатного стекла, может быть прозрачной, матовой, молочной, опаловой, зеркальной (отражающей). Если лампочка используется без плафона в маленьком помещении, то обратите внимание на лампочки с матированной или молочной колбой, так как их световые потоки на 3% и 20% соответственно меньше чем световой поток прозрачных ламп. Также колбы могут покрываться с наружной стороны декоративными красителями, лаками, керамикой.
  • Буферный газ (полость колбы). Для предотвращения окисления спирали (тела накала) из колбы выкачивают воздух, создавая внутри вакуум. Однако сегодня вакуум используется только в маломощных лампочках, а большинство современных моделей наполнены инертным газом, который увеличивает силу свечения. По составу газовой среды лампы накаливания можно разделить на: вакуумные, газонаполненные (ксенон, криптон, смесь азота с аргоном и т.д.), галогенные.
  • Тело накала . Чаще всего изготавливается из проволоки круглого сечения, реже – из ленточного металла. В первых моделях лампочек применялась угольная нить, в современных – спираль из вольфрама или осмиево-вольфрамового сплава.
  • Токовые вводы (свинцовая проволока).
  • Держатели тела накала (молибденовые держатели).
  • Ножка (штенгель и ножка лампы).
  • Внешнее звено токоввода .
  • Плавкая вставка (предохранитель)
  • Корпус цоколя .
  • Стеклянный изолятор цоколя .
  • Контакт донышка цоколя .

Какие бывают виды/типы ламп накаливания?

Классификация ламп накаливания довольно разветвленная, так как учитывает множество характеристик.

По виду цоколя самыми распространенными являются резьбовые и штырьковые. В быту чаще всего можно встретить резьбовой цоколь Эдисона, обозначающийся буквой Е, возле которой пишется его диаметр в миллиметрах, например, Е10, Е14, Е27 и Е40.

По форме колбы лампочки накаливания бывают разнообразными, начиная со стандартных грушевидных, заканчивая фигурными, витыми и др. В некоторых случаях размер и форма колбы (а также наличие светоотражающих участков) связаны с тем, где применяется лампа накаливания, в других же случаях это связано с декоративной функцией.

Лампы накаливания: характеристики и маркировка

Чтобы знать, как выбрать лампу накаливания, необходимо научиться читать ее маркировку, которая представляет собой сочетание букв и цифр. Буквенная часть маркировки указывает на свойства и конструкцию изделия, к примеру:

Б – биспиральная

БО – биспиральная с опаловой колбой, которая наполнена аргоном

БК – биспиральная, колба наполнена криптоном

ДБ – диффузная с матированием внутри колбы

В – вакуумная

Г — газонаполненная

О – с опаловой колбой

М – с молочной колбой

Ш – шаровидная

З – зеркальная (ЗК – концентрированная кривая света, ЗШ – расширенная кривая)

МО – применяемая для местного освещения

Цифрами указывается диапазон напряжения и мощность. Так, маркировку Б 220..230 60 можно расшифровать так: биспиральная лампа накаливания мощностью 60Вт, рассчитана на диапазон напряжений от 220 до 230 В.

Какие недостатки/преимущества у лампы накаливания?

К достоинствам лампочек накаливания можно отнести:

  • невысокую стоимость;
  • широкий диапазон мощностей;
  • бесперебойную работу при низком напряжении (со снижением интенсивности освещения);
  • устойчивость к незначительным перепадам напряжения (с возможным сокращением срока службы);
  • комфортную цветовую температуру (теплую);
  • возможность использовать во влажных помещениях;
  • простоту эксплуатации.

К недостаткам относится:

  • сильный нагрев (создание пожароопасной ситуации);
  • небольшой срок эксплуатации;
  • низкая светоотдача (КПД <4%)
  • зависимость светоотдачи от напряжения;
  • риск разрыва колбы;
  • хрупкость.

Как увеличить срок службы лампы накаливания?

Как уже было сказано ранее, предполагаемый производителем срок службы лампочек накаливания достигает в среднем 750-1000 часов, однако на практике перегорают они гораздо чаще. Это происходит из-за возникновения трещин и разрушения вольфрамовой нити (вследствие перегрева и испарения). Чтобы продлить срок эксплуатации лампы, следует для начала устранить возможные причины перегорания.

  1. Диапазон напряжений. Для разных ламп накаливания производители указывают не одно значение напряжения, а диапазон: 125..135, 220..230, 230..240В и т.д. Если напряжение в вашей квартирной цепи превышает указанные значение, то лампа будет перегорать быстрее, поэтому при напряжении 230В нельзя выбирать лампочку с параметрами 215..220В. Так, если напряжение выше всего на 6%, срок службы уменьшится вдвое.
  2. Вибрации. В условиях вибраций нить накала быстрее растрачивает свой ресурс, поэтому при пользовании переносными устройствами лучше осуществлять перемещения с выключенной лампочкой.
  3. Патрон. Если вы заметили, что лампочки чаще всего перегорают в одном и том же патроне, тогда следует заменить его или же проверить контакты. Также следует ставить в люстру с несколькими патронами лампы одинаковые по мощности.
  4. Понижение напряжения. Если понизить напряжение в сети всего на 8%, лампочка будет служить в 3,5 раза дольше. Для понижения можно подключить последовательно с лампой полупроводниковый диод.

Самая долгогорящая лампочка накаливания имеет название «Столетняя лампа», находится она в пожарной части в Ливерморе (Калифорния). За счет работы на очень низкой мощности (4 ватта), толстой нити накала из углерода (в 8 раз толще, чем в обычных лампочках нашего времени), а также бесперебойному использованию без выключений и включений она работает там с 1901 года.

Как подключить лампу накаливания через диод

Чтобы продлить срок службы лампочки (а заодно и сэкономить на электричестве) можно подключить ее через диод. При выборе диода необходимо обратить внимание на такие его параметры, как максимальный прямой ток (+ в импульсе) и максимальное обратное напряжение. Чтобы облегчить задачу и не просчитывать все параметры, приведем табличку:

Для сборки конструкции понадобится:

  • 1 работающая лампочка Е27
  • 1 неработающая лампочка Е27 (или цоколь от нее);
  • диод;
  • паяльник.

Процесс сборки . Припаиваем диод к пятачку на цоколе рабочей лампочки. Аккуратно отделяем цоколь от сгоревшей лампочки, делаем в нем отверстие и продеваем сквозь него вторую «ножку» диода. Выведенный конец припаиваем к месту выведения, затем спаиваем между собой оба цоколя.

Более простой способ: подсоединить диод одним концом к клемме выключателя, а другим – к проводу, который ведет к лампочке.

Как диод продлевает срок службы лампочки накаливания?

В большинстве случаев нить накала перегорает в момент подачи питания (включения тумблера) из-за слишком быстрого нагревания холодной спирали. Полупроводниковый диод уменьшает ток и позволяет вольфраму нагреваться постепенно, с меньшей скоростью. Лампочка начинает заметно мерцать, так как ток проходит полуволнами.

Лампочка накаливая – предмет, знакомый всем. Электричество и искусственный свет уже давно стали для нас неотъемлемой частью действительности. Но мало кто задумывается, как появилась та самая первая и привычная нам лампа накаливания.

Наша статья расскажет вам, что собой представляет лампа накаливания, как она работает и как появилась в России и во всем мире.

Что собой представляет

Лампа накаливания — электрический вариант источника света, основная часть которого представляет собой тугоплавкий проводник, играющий роль тела накала. Проводник размещен в колбе из стекла, которая внутри бывает накаченной инертным газом или полностью лишенной воздуха. Пропуская через тугоплавкий тип проводника электрический ток, данная лампа может испускать световой поток.

Свечение лампы накаливания

Принцип функционирования базируется на том, что когда электрический ток течет по телу накала, данный элемент начинает накаливаться, нагревая вольфрамовую нить. Вследствие этого нить накала начинает испускать излучение электромагнитно-теплового типа (закон Планка). Для создания свечения температура накала должна составлять пару тысяч градусов. При снижении температуры спектр свечения будет становиться все более красным.
Все минусы, имеющиеся у лампы накаливания, кроются в температуре накала. Чем лучше нужен световой поток, тем большая температура потребуется. При этом вольфрамовая нить характеризуется пределом накала, при превышении которого этот источник света навсегда выходит из строя.
Обратите внимание! Температурный предел нагрева для ламп накаливания — 3410 °C.

Конструкционные особенности

Поскольку лампа накаливания считается самым первым источников света, то вполне закономерно, что ее конструкция должна быть достаточной простой. Особенно, если сравнивать с нынешними источниками света, которые ее постепенно вытесняют с рынка.
В лампе накаливания ведущими элементами считаются:

  • колба лампы;
  • тело накала;
  • токовводы.

Обратите внимание! Первая подобная лампа имела именно такое строение.

Конструкция лампы накаливания

На сегодняшний день разработано несколько вариантов ламп накаливания, но такое строение характерно для самых простых и самых первых моделей.
В стандартной лампочке накаливания, кроме вышеописанных элементов имеется предохранитель, который представляет собой звено. Оно состоит из ферроникелевого сплава. Его вваривают в разрыв одного из двух токовводов изделия. Звено размещается в ножке токоввода. Оно нужно для того, чтобы предупредить разрушение стеклянной колбы во время прорыва нити накала. Это связано с тем, что при прорыве вольфрамовой нити создается электрическая дуга. Она может оплавить остатки нити. А ее фрагменты могут повредить колбу из стекла и привести к возникновению возгорания.
Предохранитель же разрушает электрическую дугу. Такое ферроникелевое звено размещается в полости, где давление равняется атмосферному. В данной ситуации дуга гаснет.
Такое строение и принцип работы обеспечили лампе накаливания широкое распространение по миру, но из-за их высокого энергопотребления и непродолжительному сроку службы, она сегодня стали использоваться гораздо реже. Связано это с тем, что появились более современные и эффективные источники света.

История открытия

В создание лампы накаливания в том виде, в котором она известна на сегодняшний день, сделали свой вклад исследователи, как из России, так и из других стран мира.

Александр Лодыгин

До момента, когда изобретатель Александр Лодыгин из России начал трудиться над разработкой ламп накаливания, в ее истории нужно отметить некоторые важные события:

  • в 1809 году известный изобретатель Деларю из Англии создал свою первую лампу накаливания, оснащенную платиновой спиралью;
  • через почти 30 лет в 1938 году уже бельгийский изобретатель Жобар разработал угольную модель лампы накаливания;
  • изобретатель Генрих Гёбель из Германии в 1854 году уже представил первый вариант рабочего источника света.

Лампочка немецкого образца имела обугленную нить из бамбука, которая помещалась в вакуумированный сосуд. В течение пяти последующих лет Генрих Гёбель продолжал свои наработки и в конечном счете пришел к первому опытному варианту рабочей лампочки накаливания.

Первая практичная лампочка

Джозеф Уилсон Суон, знаменитый физик и химик из Англии, в 1860 году явил миру свои первые успехи в области разработки источника света и за свои результаты был вознагражден патентом. Но некоторые трудности, которые возникли с созданием вакуума, показали неэффективную и не долгосрочную работу лампы Суона.
В России, как уже отмечалось выше, исследованиями в области эффективных источников света занимался Александр Лодыгин. В России он смог добиться свечения в стеклянном сосуде угольного стержня, из которого предварительно был откачен воздух. В России история открытия лампочки накаливания началась в 1872 году. Именно в этом году Александру Лодыгины удались его эксперименты с угольным стержнем. Через два года он в России получает патент под номером 1619, который был выдан ему на нитевой вид лампы. Нить он заменил на стержень из угля, находившийся в вакуумной колбе.
Ровно через год В. Ф. Дидрихсон значительно улучшил вид лампы накаливания, созданную в России Лодыгином. Усовершенствование заключалось в замене угольного стержня на несколько волосков.

Обратите внимание! В ситуации, когда один из них перегорал, происходило автоматическое включение другого.

Джозеф Уилсон Суон, который продолжал свои попытки усовершенствовать уже имеющеюся модель источника света, получает патент на лампочки. Здесь в качестве нагревательного элемента выступало угольное волокно. Но здесь оно располагалось уже в разреженной атмосфере из кислорода. Такая атмосфера позволила получить очень яркий свет.

Вклад Томаса Эдисона

В 70-х года позапрошлого столетия в изобретательскую гонку по созданию работающей модели лампы накаливания включился изобретатель из Америки — Томас Эдисон.

Томас Эдисон

Он проводил исследования в вопросе применения в виде элемента накаливания нитей, произведенных из разнообразных материалов. Эдисон в 1879 году получает патент на лампочку, оснащенной платиновой нитью. Но через год он возвращается к уже проверенному угольному волокну и создает источник света со сроком эксплуатации в 40 часов.

Обратите внимание! Одновременно с работой по созданию эффективного источника света, Томас Эдисон создал поворотный тип бытового выключателя.

При том, что лампочки Эдисона работают всего лишь 40 часов, они начали активно вытеснять с рынка старый вариант газового освещения.

Результаты работ Александра Лодыгина

В то время, как на другом конце мира Томас Эдисон проводил свои эксперименты, в России аналогичными изысканиями продолжал заниматься Александр Лодыгин. Он в 90-х годах 19 века изобрел сразу несколько видов лампочек, нити которых были изготовлены из тугоплавких металлов.

Обратите внимание! Именно Лодыгин первым решился использовать вольфрамовую нить в качестве тела накаливания.

Лампочка Лодыгина

Кроме вольфрама он также предлагал использовать нити накаливания, изготовленные из молибдена, а также скручивать их в форме спирали. Такие свои нити Лодыгин размещал в колбах, из которых откачивался весь воздух. Вследствие таких действий нити предохранялись от кислородного окисления, что делало срок службы изделий значительно продолжительным.
Первый тип коммерческой лампочки, произведенный в Америке, содержала вольфрамовую нить и изготавливалась по патенту Лодыгина.
Также стоит отметить, что Лодыгиным были разработаны газонаполненные лампы, содержащие угольные нити и заполненные азотом.
Таким образом, авторство первой лампочки накаливания, отправленной в серийное производство, принадлежит именно российскому исследователю Александру Лодыгину.

Особенности работы лампочки Лодыгина

Для современных ламп накаливания, которые являются прямыми потомками модели Александра Лодыгина, характерны:

  • отменный световой поток;
  • отличная цветопередача;

Цветопередача лампы накаливания

  • низкий показатель конвекции и проводимости тепла;
  • температура накала нити — 3400 K;
  • при максимальном уровне показателя температуры накала коэффициент для полезного действия составляет 15 %.

Кроме этого данный тип источника света в ходе своей работы потребляет много электроэнергии, по сравнению с другими современными лампочками. Из-за конструкционных особенностей такие лампы могут работать примерно 1000 часов.
Но, несмотря на то, что по многим критериям оценки данная продукция уступает более совершенным современным источникам света, она, благодаря своей дешевизне, все еще остается актуальной.

Заключение

В создании эффективной лампы накаливания участвовали изобретатели из разных стран. Но только российский ученый Александр Лодыгин смог создать самый оптимальный вариант, которым мы, собственно, и продолжаем пользоваться по сегодняшний день.


Секреты установки точечных светильников в натяжной потолок: насколько это сложно?

Лампа накаливания – электрический осветительный прибор, принцип действия обусловлен нагревом до высоких температур нити тугоплавкого металла. Тепловой эффект тока известен давно (1800 год). С течением времени вызывает сильный нагрев (выше 500 градусов Цельсия), заставляя нить светиться. В стране вещички носят имя Ильича, на деле продвинутые историки бессильны однозначно дать ответ, кого назвать изобретателем лампы накаливания.

Конструкция ламп накаливания

Изучим строение прибора:

История создания ламп накаливания

Спирали далеко не сразу стали изготавливать из вольфрама. Применялись графит, бумага, бамбук. Много людей шло параллельным путем, создавая лампы накаливания.

Бессильны привести список 22 имен ученых, называемых зарубежными писателями авторами изобретения. Неправильно приписывать заслуги Эдисону, Лодыгину. Сегодня лампы накаливания далеки от совершенства, стремительно теряют маркетинговую привлекательность. Превышение амплитуды питающего напряжения на 10% (половину пути — 5% — РФ проделала в 2003 году, подняв вольтаж) номинала сокращает срок службы вчетверо. Снижение параметра закономерно урезает отдачу светового потока: 40% теряется при эквивалентном относительном изменении характеристик питающей сети в меньшую сторону.

Пионерам гораздо хуже. Джозеф Сван (Joseph Swan) отчаялся добиться достаточной разреженности воздуха колбы лампы накала. Насосы (ртутные) того времени неспособны выполнить задачу. Нить сгорала посредством сохранившегося внутри кислорода.

Смысл ламп накала довести спирали до степени нагрева, тело начинает светиться. Сложностей добавляло отсутствие в середине XIX века высокоомных сплавов – квота преобразования силы электрического тока сформирована увеличенным сопротивлением проводящего материала.

Усилия ученых мужей ограничивались следующими направлениями:

  1. Выбор материала нити. Критериями выступали одновременно высокое сопротивление, устойчивость к горению. Волокна бамбука, являющегося изолятором, покрывали тонким слоем проводящего графита. Малая площади проводящего слоя угля повышало сопротивление, давая нужный результат.
  2. Однако древесная основа быстро воспламенялась. Вторым направлением считаем попытки создать полный вакуум. Кислород известен с конца XVIII века, ученые мужи быстро доказали: элемент участвует в горении. В 1781 году Генри Кавендиш определил состав воздуха, начиная разрабатывать лампами накала, слуги науки ведали: земная атмосфера разрушает нагретые тела.
  3. Важно передать напряжение нити. Шла работа, преследующая цели создания разъемных, контактных частей цепи. Понятно, тонкий слой угля снабжен большим сопротивлением, как подвести электричество? Трудно поверить, пытаясь достичь приемлемых результатов, использовали ценные металлы: платина, серебро. Получая приемлемую проводимость. Недешевыми путями удавалось избежать нагрева внешней цепи, контактов, нить накалялась.
  4. Отдельно отметим резьбу цоколя Эдисона, используемую поныне (Е27). Удачная идея, легшая в основу быстро заменяемых лампочек накала. Прочие способы создания контакта, наподобие пайки, мало годятся. Соединение способно распасться, разогретое действием тока.

Стеклодувы XIX века достигли профессиональных высот, колбы изготавливали запросто. Отто фон Герике, конструируя генератор статического электричества, рекомендовал сферическую колбу залить серой. Материал застынет — стекло разбить. Получался идеальный шар, при трении собирал заряд, отдавая стальному стержню, проходящему через центр конструкции.

Пионеры отрасли

Можете прочесть: идея подчинить электричество целям освещения впервые реализована сэром Гемфри Дэви. Вскоре после создания вольтова столба ученый вовсю экспериментировал с металлами. Выбрал благородную платину за высокую температуру плавления – прочие материалы воздухом быстро окислялись. Попросту сгорали. Источник света вышел неяркий, давая основу сотням последующих наработок, показав направление движения желающим получить конечный результат: осветить, заручившись помощью электричества.

Произошло в 1802 году, ученому исполнилось 24 года, позже (1806) Гемфри Дэви представил суду общественности вполне работоспособный разрядный осветительный прибор, в конструкции которого ведущую роль занимали два угольных стрежня. Следует отнести короткую жизнь столь блистательного светила небосвода науки, давшего миру представление о хлоре, йоде, ряде щелочных металлов, на постоянные эксперименты. Смертельные опыты по вдыханию угарного газа, работы с оксидом азота (мощным отравляющим веществом). Авторы отдали честь блистательным подвигам, сократившим жизнь ученого.

Гемфри забросил, вырезав целое десятилетие исследований осветительных приборов, вечно занятый. Сегодня Дэви называют отцом электролиза. Трагедия 1812 года Felling Colliery наложила глубокий отпечаток, помрачив сердца многих. Сэр Гемфри Дэви пополнил ряды занявшихся разработкой безопасного источника света, уберегающего шахтёров. Электричество подходило мало, не существовало мощных надежных источников энергии. Чтобы рудничный газ перестал взрываться временами, применялись разные меры, наподобие металлической сетки-диффузора, препятствующей распространению пламени.

Сэр Гемфри Дэви сильно опередил время. Лет примерно на 70. Конец XIX века лавинообразно выдал новые конструкции, призванные вырвать человечество из вечной тьмы, благодаря использованию электричества. Одним из первых Дэви отметил зависимость сопротивления материалов от температуры, позволяя позже Георгу Ому получить . Спустя полвека открытие было положено в основу создания Карлом Вильгельмом Сименсом первого электронного термометра.

6 октября 1835 года Джеймс Боумэн Линдсей продемонстрировал лампочку накала, окруженную стеклянной колбой для защиты от действия атмосферы. Как выразился изобретатель: можно было читать книгу, рассеивая темноту на расстоянии полутора футов от подобного источника. Джеймс Боумэн, считают общепризнанные источники, является автором идеи защиты нити накала стеклянной колбой. Правда?

Склонны утверждать, в этом месте мировая история немного запуталась. Первый эскиз подобного устройства датируется 1820 годом. Приписывается почему-то Уорену де ла Ру. Которому было… 5 лет от роду. Одинокий исследователь заметил несуразицу, поставив дату… 1840 год. Бессилен детсадовец сделать столь великое изобретение. Причем забылись впопыхах демонстрации Джеймса Боумэна. Многие исторические книги (одна 1961 года, авторства Льюиса) так трактовали неведомо уже откуда взявшуюся картинку. Видимо, автор ошибся, другой источник, 1986 года Джозефа Стоера, относит изобретение на счет Августа Артура де ла Рива (1801 года рождения). Гораздо лучше соответствует действительности, объясняя демонстрации Джеймса Боумэна пятнадцатью годами позже.

Прошло незамеченным русскоязычным доменом. Английские источники проблема трактуют следующим образом: имена де ла Ру и де ла Рив явно перепутаны, касаться могут минимум четырех личностей. Физики Уорен де ла Ру, Август Артур де ла Рив упомянуты, первый в 1820 году посещал детсад, образно говоря. Прояснить историю могут отцы упомянутых мужей: Томас де ла Ру (1793 – 1866), Чарльз Гаспар де ла Рив (1770 – 1834). Неизвестный джентльмен (леди) провел целое исследование, убедительно доказал: ссылка на фамилию де ла Ру несостоятельна, сослался горой научной литературы начала XX — конца XIX века.

Неизвестный потрудился просмотреть патенты Уорена де ла Ру, набралось девять штук. Лампы накала описываемой конструкции отсутствуют. Августа Артура де ла Рива, начавшего публикацию научных трудов в 1822 году, сложно представить изобретающим стеклянную колбу. Посещал Англию – родину лампочки накала – исследовал электричество. Желающие могут написать автору статьи англоязычного сайта по электронной почте [email protected]. Пишет «ежков»: с удовольствием примет к сведению информацию, касающуюся вопроса.

Истинный изобретатель лампочки накала

Достоверно известно, в 1879 году Эдисон запатентовал (US Patent 223898) первую лампочку накала. Потомки зафиксировали событие. Касаемо более ранних публикаций, авторство вызывает сомнение. Неизвестен подаривший миру коллекторный двигатель. Сэр Гемфри Дэви отказался брать патент на изобретенный безопасный фонарь для шахты, сделав изобретение общедоступным. Подобные прихоти создают немалую путаницу. Бессильны выяснить, кто первым придумал помещать нить накала внутрь стеклянной колбы, обеспечив работоспособность конструкции, используемой повсеместно.

Лампы накаливания выходят из моды

Лампа накаливания использует вторичный принцип производства света. Достигает высокой температуры нить. КПД устройств мал, большая часть энергии расходуется впустую. Современные нормы диктуют стране беречь энергию. В моде разрядные, светодиодные лампочки. Навсегда остались в памяти Гемфри Дэви, де ла Ру, де ла Рив, Эдисон, приложившие руку, потрудившиеся вырвать человечество из тьмы.

Обратите внимание, Чарльз Гаспар де ла Рив скончался в 1834 году. Следующей осенью прошла первая публичная демонстрация… Некто нашел записи погибшего исследователя? Вопрос разрешит время, ибо все тайное откроется. Читатели обратили внимание: неизвестная сила подталкивала Дэви попробовать использовать защитную колбу, помогая шахтерам. Сердце ученого оказалось чересчур большим увидеть явный намек. Нужной информацией англичанин обладал…