Наибольшую опасность альфа излучение представляет. Характеристика отдельных видов излучений

В ядрах одного и того же элемента число нейтронов может быть различным, а число протонов всегда одно и то же. Такие ядра называются изотопами . Например, в ядрах водорода всегда 1 протон, а число нейтронов может быть 0, 1, 2, 3, 4, 6.

Радиоактивность

Радиоактивность - явление самопроизвольного превращения неустойчивого изотопа одного химического элемента в изотоп другого элемента. При этом испускаются частицы, обладающие большой проникающей способностью.

Например, радиоактивный элемент радий превращается в другой химический элемент - радон с выделением гелия.

В 1899 г. Э. Резерфорд провел опыт, в результате которого было обнаружено, что радиоактивное излучение неоднородно. Существуют три различные частицы с разными зарядами. Альфа-частица - положительно заряженная (лишенный электронов атом гелия), бета-частица - отрицательно заряженная (электрон), и нейтральная гамма-частица (фотон).

Три вида излучения обладают разной проникающей способностью. Самые поникающие - гамма-лучи. Они легко проходят через вещество. Чтобы их остановить нужна свинцовая пластина толщиной 5 см, либо 30 см бетона, либо 60 см грунта.

Ядерные реакции

Альфа-распад

Пример:
где - альфа-излучение - ядра гелия.

Этот распад наблюдается для тяжелых ядер с А>200. При альфа-распаде одного химического элемента образуется другой химический элемент, который в таблице Менделеева расположен на 2 клетки ближе к ее началу, чем исходный.

Бета-распад

Пример:
где - бета-излучение - электроны.

При бета-распаде одного химического элемента образуется другой химический элемент, который расположен в таблице Менделеева в следующей клетке за исходным.

Гамма-излучение

Испускание гамма-излучения не приводит к превращениям элементов.

В ходе ядерной реакции суммарный электрический заряд и число нуклонов сохраняются. Ядерные реакции бывают двух типов: эндотермические (с поглощением энергии) и экзотермические (с выделением энергии). Если сумма масс исходного ядра и частиц, больше суммы масс конечного ядра и испускаемых частиц, то энергия выделяется, и наоборот.

Открытие протона:

Достаточно большой перечень вопросов породило необычайное открытие радиоактивности. Величайший прорыв в данной сфере сделал ученый Э. Резерфорд, который поместил в магнитное поле особый излучатель, а именно — радиоактивный. В итоге пучок распался на три составляющие.

Особенности излучения

На основе серии опытов, стало известно, что альфа-излучение – это поток положительных частиц, а их параметры абсолютно идентичны тем, которые имеются у ядер гелия. Что касается атома гелия, то у него только 2 электрона.

Помимо альфа-лучей, обнаружены гамма и бета, каждый из них обладает особой силой, имеет радиоактивность. Таким образом, можно смело утверждать, что излучение альфа – это дважды ионизированный атом гелия. Альфа является положительно заряженным, гамма – нейтральным, а что касается бета, то он является отрицательным лучом. Альфа, гамма, а также бета имеют сильные отличия, касающиеся способности проникающей. Простыми словами, гамма, альфа, бета отличны тем, что они поглощаются разными компонентами с различной интенсивностью.

Гамма – это лучи, напоминающие излучение рентгена, но их проникающая способность гораздо выше. Это приводило к мысли, что гамма лучи являются электромагнитными волнами. Однако сомнения отошли в сторону, когда обнаружили дифракцию гамма лучей на особых кристаллах также была определена их длина. Как ни странно, длина вол гамма лучей очень маленькая, а именно – до 10-11 сантиметров.

Что касается бета-лучей, то их рассматривали в качестве заряженной частицы. С бета было намного легче проводить эксперименты. Цель проведенных исследований – определит массу, заряд бета-лучей. Было установлено, что бета-частицы являются электронами, скорость движения которых приближена к скорости света.

Альфа-излучения имеют источники:

  • реакторы;
  • объекты промышленности урановой;
  • распад весьма тяжелых химических элементов, в результате чего наблюдается проявление ядер гелия;
  • эксперименты, которые осуществляются на ускорителях частиц, лабораториях радиоизотопных;
  • ускорение гелия.

Каждый из указанных лучей имеет собственный спектр излучения. Простыми словами, спектр – это распределение частиц согласно величинам измеряемым, которое приведено к определенным условиям. Спектр различают по виду частиц. Что касается альфа-спектра, то его принято считать дискретным.

Методы защиты

Альфа-излучения имеют свой спектр, а также определенную радиоактивность, которые способны оказывать пагубное воздействие на человека. Поражающая радиоактивность потока альфа-частиц не слишком велика.

Принято считать, что спектр подобного излучения неопасен, но не стоит забывать про радиоактивность. Проникновение массивных частиц в организм человека вместе с водой, едой или же сквозь кожный покров, имеется риск серьезного отравления. Осложнение возникает по причине мощного ионизирующего воздействия, формирования кислорода, окислителя, водорода свободного. За счет того, радиоактивность оказывает воздействие на мозг, скапливаясь в нем, наблюдается появления множества патологий, которые активно снижают адаптационные, защитные функции организма.

Не смотря не радиоактивность, альфа-частицы признаны наиболее безопасными, так как после внешнего облучения не требуются защитные средства. Опасность поджидает от внутреннего облучения, когда радиоактивность частиц действует более хитро. Для предотвращения неприятностей, достаточно не допустить попадание в организм радионуклидов, используя индивидуальную защиту:

  • одежда, сделанная из специального материала;
  • если кожа чувствительная, можно пользоваться кремом, дерматологической пастой;
  • для глаз подойдут щитки из специального оргстекла.

В перечень рекомендаций входит информация о воздействии пищевых продуктов на выведение, нейтрализацию радионуклидов в организме. Такая способность имеется у продуктов, которые богаты витамином С, В. Отлично помогают перепелиные яйца, но если доза облучения не слишком большая. Они считаются богатым источником аминокислот, витаминов и микроэлементов. Из растений, которые способны помочь, можно выделить топинамбур.

Сфера применения излучения

Кроме защиты от альфа-частиц, была разработана особая терапия с их использованием. Лечебный сеанс позволяет пользоваться изотопами, которые были получены при излучении, а именно – торон, радон, которые обладают небольшими сроками жизни, быстро ликвидируются из организма.

Примеры применения альфа-излучения в медицине:

  • пероральное применение воды радоновой;
  • прием ванны радоновой;
  • дыхательная процедура воздухом с радонами.

Доктора абсолютно и твердо уверены, что влияние альфа-частиц можно фокусировать, уничтожая раковые клетки. Подобная целебная терапия способна оказать седативное, обезболивающее, противовоспалительное влияние на человека. Рекомендовано к лечению опорно-двигательного аппарата, сердечно-сосудистых и гинекологических недугов. Процедура проводится строго под контролем лечащего врача и специально обученного человека.

Мы уже упоминали о многочисленных попытках повлиять на способность радия излучать радиоактивные лучи. Эти попытки не привели ни к какому результату. Однако, пытаясь воздействовать на радий магнитным полем, Пьер и Мария Кюри обнаружили, что хотя лучеиспускающая способность радия при помещении его в магнитное поле не меняется (интенсивность излучения остаётся неизменной), сами радиоактивные лучи претерпевают сильное изменение при прохождении через магнитное поле. Однородный до вступления в магнитное поле луч разделяется полем на два луча. Один из этих лучей рас-пространяется так, как если бы магнитное поле на него совершенно не действовало; другой луч под влиянием поля резко изменяет направление своего движения.

Ко времени опытов Беккереля физикам уже были известны лучи, способные отклоняться в магнитном поле. Это были лучи, образованные потоком электрически заряженных частиц, движущихся в одном направлении. Из направления отклонения можно определить знак заряда, т. е. установить, является ли заряд частицы положительным или отрицательным. Более подробные сведения могли быть получены при наблюдении движения этих частиц в магнитном и электрическом полях. Как мы увидим далее, в этом случае возможно определить не только заряд, но и его отношение к массе движущейся частицы. Из опытов Кюри вытекало, что движущиеся заряды отрицательны, а измеренное отношение заряда к массе оказа-лось равным 5,3-10 17 электростатических единиц на грамм. Таким же отношением заряда к массе обладают электроны, имеющие отрицательный электрический заряд. Из этого сопо-ставления можно было заключить, что по крайней мере часть лучей, испускаемых радием, представляет собой поток движу-щихся электронов.

Была измерена величина скорости электронов, испускаемых радием. Она оказалась весьма большой. Некоторые из элек-тронов имели скорость, близкую к скорости света, т. е. около 3.00 000 км в секунду.

Эти исследования немного приоткрыли таинственное покры-вало, окутывающее радиоактивные лучи, - оказалось, что часть их представляет собой поток движущихся электронов. Но что же представляет собой другая часть лучей, которая не отклоняется магнитным полем?

За её исследование взялся Резерфорд. Он заметил, что неотклоняемая в магнитном поле часть радиоактивных лучей обладает такими же странными особенностями в поглощении, как и весь пучок. Хорошо было известно и раньше, что при прохождении радиоактивных лучей через вещество различной толщины они поглощаются сначала очень сильно, а затем медленно, так что, в общем, они могут проходить через зна-чительные толщи вещества. Поэтому можно было думать, что радиоактивные лучи неоднородны и представляют собой «смесь» различных лучей, одни из которых поглощаются сильно, а другие слабо. Такая мысль до опытов Пьера и Марии Кюри никем не высказывалась. Однако, когда опыты Кюри подтвер-дили сложность состава радиоактивного излучения, естественно было предположить, что сильно поглощаемая часть излучения является потоком электронов, а другая часть этих лучей, которая, подобно лучам Рентгена, не отклоняется магнитом, так же как и лучи Рентгена, сравнительно слабо поглощается веществом. Опыт, однако, показал, что эта часть радиоактив-ных лучей ведёт себя в отношении поглощения так же, как и весь пучок. Уже очень тонкие слои вещества резко ослаб-ляют её интенсивность, а затем даже сравнительно толстые слои вещества поглощают остающиеся лучи незначительно.

Это различие и побудило Резерфорда к дальнейшим ис-следованиям.

А что, если и та часть лучей радия, которую Пьер и Ма-рия Кюри не смогли отклонить магнитным полем, тоже не-однородна? Что, если они пользовались слабым магнитным полем? Может быть, сильное магнитное поле окажет иное действие? И Резерфорд повторяет их опыты, но при этом он создаёт магнитное поле, гораздо более сильное, чем в их опытах.

Результат опытов Резерфорда оказался поразительным. Пучок лучей, который в опытах Кюри не отклонялся магнит-ным полем, в магнитном поле Резерфорда в свою очередь расщепился на две части. Одна из них по-прежнему не откло-нялась магнитным полем, а другая часть под действием силь-ного магнитного поля слегка отклонялась от своего первона-чального направления. Весьма интересным оказалось то, что эти лучи отклоня-лись в сторону, противоположную отклонению электронов. Следовательно, и эта часть радиоактивных лучей представ-ляет собой поток заряженных частиц (ибо на движение не-заряженных частиц магнитное поле не действует) и притом заряженных положительно. Опыт показал, что новые состав-ляющие радиоактивных лучей в отношении поглощения вели себя вполне определённым образом.

Рис. 1.

1 --радиоактивное вещество; 2 -- свинцовая коробочка с тонким каналом, в котором помещается радиоактивное вещество; 3 -- лучи, не отклонённые магнитным полем (гамма-лучи); 4 -- лучи, слабо отклоняемые магнитным полем (альфа-лучи); 5 -- лучи, сильно отклоняемые магнитным полем (бе-та-лучи); 6 --область, в которой создано магнитное поле.

Та часть радиоактивного излучения, которая совершенно не отклонялась магнитным полем, поглощалась очень незна-чительно. Та же часть радиоактивного излучения, которую

Резерфорду впервые удалось отклонить, поглощалась чрез-вычайно сильно.

Создавалось впечатление, что лучи, наблюдавшиеся вначале Беккерелем, пред-ставляют собой смесь трёх типов лучей.

На рис. 1 приведено схе-матическое изображение раз-деления радиоактивных лу-чей магнитным полем.

Радиоактивные лучи со-стоят из лучей трёх различ-ных типов. Каждый из них получил своё особое название и обозначение. Их обозначили и назвали тремя первыми бук-вами греческого алфавита: альфа (), бета () и гамма (). Альфа-лучами назвали те лу-чи, которые магнитным полем отклоняются слабо и представляют собой поток положительно заряженных ча-стиц. Бета-лучами стали назы-вать те лучи, которые сравни-тельно сильно отклоняются магнитным полем и представ-ляют собой поток электронов. Гамма-лучами стали называть лучи, которые совсем не отклоняются магнитным полем. Следует отметить, что альфа-лучи отклоняются в маг-нитном поле в виде узкого пучка, в то время как бета-лучи отклоняются магнитным полем в виде широкого размы-того пучка. Это обстоятельство говорит о том, что альфа-лучи, вылетающие из радия, имеют одинаковую энергию, а бета-лучи представляют собой поток электронов различной энергии.

Разделение радиоактивных лучей на альфа-, бета- и гамма--лучи позволило исследовать их свойства отдельно. Вот неко-торые результаты этих исследований.

Альфа-лучи поглощаются наиболее сильно. Тонкий листо-чек слюды или алюминия толщиной всего лишь в 0,05 мм поглощает альфа-лучи почти полностью. Достаточно завер-нуть радий в обыкновенную писчую бумагу, чтобы поглотить все альфа-лучи. Альфа-лучи сильно поглощаются воздухом. Слой воздуха толщиной всего лишь в 7 см поглощает альфа-лучи радия почти нацело.

Бета-лучи поглощаются веществом значительно слабее. Они в состоянии ещё в заметном количестве пройти через пластинку алюминия толщиной в несколько миллиметров.

Гамма-лучи поглощаются во много раз слабее бета-лучей. Они проходят через пластинку алюминия толщиной в несколько десятков сантиметров. Пластинка свинца толщиной в 1,3 см ослабляет интенсивность гамма-лучей всего лишь в два раза.

Помимо различия в степени поглощения, между альфа-, бета- и гамма-лучами существует большое различие в характере поглощения. Наиболее отчётливо оно проявляется в изменении интенсивности этих лучей при постепенном возрастании тол-щины поглощающего вещества.

Бета- и гамма-лучи поглощаются постепенно. Уже самые небольшие слои вещества в некоторой мере поглощают эти лучи. Число электронов и интенсивность гамма-лучей постепенно падают с увеличением толщины фильтрующего слоя.

Альфа-лучи ведут себя совершенно иначе. При прохожде-нии через малые слои вещества число альфа-частиц не изме-няется. Уменьшается только энергия этих частиц. С возра-станием толщины поглощающего слоя энергия частиц про-должает уменьшаться, но число их сохраняется. Так будет происходить до тех пор, пока толщина поглощающего слоя не достигнет некоторой определённой величины. Фильтр та-кой толщины задержит сразу все альфа-частицы.

Таким образом, каждая альфа-частица проходит в дан-ном веществе вполне определённый путь. Этот путь принято называть пробегом альфа-частицы. Пробег альфа-частицы за-висит от её энергии и от природы вещества, в котором она движется. Установив связь между пробегом и энергией альфа-частиц, можно в дальнейшем по величине пробега определять энергию альфа-частиц. Таким методом измерения энергии альфа-частиц широко пользуются на практике.

Сильное поглощение альфа-частиц может быть использовано для изучения их свойств.

Если взять радиоактивное вещество в виде шарика, то альфа-лучи, выходящие из всего объёма этого шарика, по-глощаются в самом шарике. Лишь очень тонкий поверхностный слой этого вещества испускает альфа-лучи, способные выйти наружу. Поэтому вне такого шарика должны наблюдаться главным образом бета- и гамма-лучи. Если же радиоактив-ное вещество распределить очень тонким слоем, то будут дей-ствовать почти- в одинаковом количестве все три рода лучей.

Сравнением действия радиоактивных лучей от толстого ра-диоактивного источника с действием радиоактивного препарата, распределённого в виде очень тонкого слоя, было установлено, что именно альфа-лучи ответственны за то, что радиоактивные лучи вызывают флюоресценцию и делают воздух проводником электричества.

Хорошо известно, что воздух делается проводником элек-тричества в том случае, если в нём образуются заряженные атомы - ионы. Альфа-лучи ионизуют воздух примерно в сто раз сильнее, чем бета- и гамма-лучи от того же радиоактив-ного источника. Но на образование ионов - на ионизацию воздуха требуется энергия. Было установлено, что на обра-зование одной пары ионов в воздухе требуется вполне опреде-лённая энергия, равная 33 электрон-вольтам В ядерной физике очень употребительна единица энергии, которую принято называть электрон-вольтом. Один электрон-вольт - это энергия, которую приобретает электрон, проходящий в электри-ческом поле разность потенциалов в 1 вольт. Один электрон-вольт - очень малая единица энергии, равная всего лишь 1,6-10- 1Э джоуля. Так как альфа-частицы образуют много ионов, то при своём движении в воздухе они тратят большое количество энергии. Этим и объясняется описанное ранее свойство альфа-лучей сильно поглощаться различными веществами. Впоследствии мы расска-жем, как было измерено число пар ионов, создаваемых одной альфа-частицей. Сейчас мы ограничимся только указанием этой цифры. Оказалось, что одна альфа-частица создаёт в воз духе около 200000 пар ионов. Это позволяет нам оценить энергию одной альфа-частицы. Энергия альфа-частицы оказа-лась приблизительно равной 6000000 электрон-вольт.

Следующая страница>>

§ 1. Ионизирующие излучения, их определение и свойства. Радиоактивность.

Альфа-лучи. Бета-лучи. Гамма-лучи. Рентгеновские лучи.

Радиоактивность - самопроизвольное превращение ядер одних атомов в ядра других атомов, сопровождающееся испусканием ионизирующих излучений.

Радиоактивное излучение называют ионизирующим, так как при взаимодействии с веществом оно способно прямо или косвенно создавать в нем заряженные атомы и молекулы (ионы). К ионизирующим излучениям относятся рентгеновские лучи, радио- и гамма-лучи, альфа-лучи, бета-лучи, потоки нейтронов и других ядерных частиц, космические лучи.

Альфа-лучи представляют собой поток α-частиц положительно заряженных ядер атомов гелия и характеризуются большой ионизирующей и малой проникающей способностями. Вследствие этих свойств α-частицы не проникают через внешний слой кожи. Вредное воздействие на организм человека проявляется при нахождении его в зоне действия вещества, излучающего α-частицы.

Бета-лучи представляют собой поток электронов или позитронов, излучаемых ядрами атомов радиоактивных веществ. По сравнению с α-частицами они обладают большей проникающей способностью и поэтому одинаково опасны как при непосредственном прикосновении к излучающему веществу, так и на расстоянии.

Гамма-лучи характеризуются наименьшей ионизирующей и наибольшей проникающей способностью. Это высокочастотное электро-магнитное излучение, возникающее в процессе ядерных реакций или радиоактивного распада.

Рентгеновские лучи, возникающие при бомбардировке вещества потоком электронов, являются также электромагнитным излучением. Они могут возникнуть в любых электровакуумных установках, обладают малой ионизирующей способностью и большой глубиной проникновения.

Для количественной оценки действия, производимого любыми ионизирующими излучениями в среде, пользуются понятием поглощенная доза излучения Д п =W/m,

где W - энергия ионизирующего излучения, поглощенная облученным веществом, Дж; m - масса облученного вещества, кг. Внесистемной единицей поглощенной дозы является рад. 1 рад соответствует поглощению энергии 0,01 Дж веществом массой 1 кг.

Количественной характеристикой рентгеновского и гамма-излучений является экспозиционная доза (Кл/кг): Д э = Q/m,

где Q - суммарный электрический заряд ионов одного знака, Кл; m - масса воздуха, кг.

За единицу экспозиционной дозы рентгеновского и гамма-излучений принимают кулон на килограмм (Кл/кг). Кулон на килограмм - экспозиционная доза рентгеновского или гамма-излучения, при которой сопряженная с этим излучением корпускулярная эмиссия на 1 кг сухого атмосферного воздуха создает в воздухе ионы, несущие заряд 1 Кл электричества каждого знака.

Внесистемной единицей экспозиционной дозы рентгеновского и гамма-излучений является рентген. Рентген -это такая доза рентгеновского или гамма-излучения, при которой сопряженная с этим излучением корпускулярная эмиссия в 1,293*10 -6 г сухого воздуха при нормальных условиях (при температуре 0° С и давлении 760 мм рт. ст.) образует ионы, несущие 1 ед. заряда СГС каждого знака; 1 рентген (Р) = 10 3 миллирентген (мР) = 10 6 микрорентген (мкР).

Экспозиционная и поглощенная дозы, отнесенные ко времени, определяются как мощности доз и измеряются соответственно рентген в секунду (Р/с) и рад в секунду (рад/с).

Воздействие различных радиоактивных излучений на живые ткани зависит от проникающей и ионизирующей способности излучения. Разные виды излучений при одинаковых значениях поглощенной дозы вызывают различный биологический эффект. Поэтому для оценки радиационной опасности введено понятие эквивалентной дозы Д экв, единицей которой является бэр (биологический эквивалент рада) *

Д экв =Д и /k,

* 1 бэр - эквивалентная доза любого ионизирующего излучения в биологической ткани, которая создает такой же биологический эффект, что и доза в 1 рад рентгеновского или гамма-излучения,

где k - качественный коэффициент, показывающий отношение биологической эффективности данного вида излучений к биологической эффективности рентгеновского излучения, принятого за единицу.

Радиоактивностью называют свойство самопроизвольного излучения каких – либо веществ, при отсутствии внешних влияний.

Радиоактивные свойства впервые были обнаружены у урана в 1896 г французским физиком Анри Беккерелем (опыт с солями урана)

Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными.

Свойства радиоактивных излучений

1. Вызывают ионизацию газов

2. Оказывают химическое действие

3. Радиоактивность представляет собой не молекулярное явление, а внутреннее свойство атомов радиоактивного элемента

4. Радиоактивность препарата с любым химическим составом равна радиоактивности чистых радиоактинвых элементов, взятых в количестве, в котором они содержатся в этом препарате

5. Радиоактивные излучения не зависят от внешних воздействий (нагревания, увеличение давления), химические реакции, в которые вступают радиоактивные вещества не влияют на интенсивность излучения.

6. В результате радиоактивного излучения образуется вещество совершенно нового вида, полностью отличное по своим физическим и химическим свойствам от первоначального. Цепочка радиоактивных превращений заканчивается образованием нерадиоактивного (стабильного) изотопа.

7. Для каждого радиоактивного вещества существует определенный интервал времени, на протяжении которого активность убывает в 2 раза. Этот интервал носит название периода полураспада.

Период полураспада Т – это время, в течение которого распадается половина наличного числа радиоактивных атомов.

закон радиоактивного распада

N 0 – число радиоактивных атомов в начальный момент времени

N – число радиоактивных атомов в конечный момент времени

t – время

T – период полураспада

8. Различают естественную радиоактивность (радиоактивность элементов встречающихся в природе) и искусственную радиоактивность) радиоактивность элементов получаемых при ядерных реакциях).

Чтобы обнаружить сложный состав радиоактивного излучения был проведен следующий опыт: радиоактивный препарат помещался на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходе из канала на излучение действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу. Вся установка помещалась в вакууме.

В отсутствии магнитного поля на фотопластинке после проявления обнаруживалось одно темное пятно, точно против канала.

В магнитном поле пучок распадался на три пучка.

Альфа излучение

Это поток положительно заряженных частиц – ядер атомов гелия. Скорости альфа частиц значительно меньше скорости бета частиц и лежат в пределах 10000- 20000 км/с. Кинетическая энергия альфа частиц велика: 4-10 Мэв.


Альфа излучение обладает наименьшей проникающей способностью. Слой бумаги толщиной около 0,1 мм полностью их задерживает.

Бета – излучение

Это поток быстрых электронов, вылетающих из атомов радиоактивного вещества. Скорости бета частиц огромны и составляют 0,99 скорости света. Энергия бета частиц доходит до нескольких мегаэлектронвольт.

Бета излучение является средним по свое проникающей способности. Их задерживает алюминиевая пластинка толщиной в несколько милиметров.

Гамма – излучение

Это поток электромагнитных волн очень малой длины (10 -8 - 10 -11 см). Скорость распространения гамма лучей в вакууме такая же, как у других электромагнитных волн 300000 км/с.

Гамма – излучение обладает наибольшей проникающей способностью. Слой свинца толщиной в 1 см уменьшает интенсивность гамма – излучение вдвое.

Гамма излучение и рентгеновское излучение равной длины волны, кроме способа получения, ничем друг от друга не отличаются.