Свойства высот треугольника пересекающихся в одной точке. Все, что нужно знать о треугольнике

При решении различного рода задач, как сугубо математического, так и прикладного характера (особенно в строительстве), нередко требуется определить значение высоты определенной геометрической фигуры. Как рассчитать данную величину (высоту) в треугольнике?

Если мы попарно совместим 3 точки, расположенные не на единой прямой, то полученная фигура будет треугольником. Высота – часть прямой из любой вершины фигуры, которая при пересечении с противоположной стороной образует угол 90°.

Найти высоту в разностороннем треугольнике

Определим значение высоты треугольника в случае, когда фигура имеет произвольные углы и стороны.

Формула Герона

h(a)=(2√(p(p-a)*(p-b)*(p-c)))/a, где

p – половина периметра фигуры, h(a) – отрезок к стороне a, проведенный под прямым углом к ней,

p=(a+b+c)/2 – расчет полупериметра.

В случае наличия площади фигуры для определения ее высоты можно воспользоваться соотношением h(a)=2S/a.

Тригонометрические функции

Для определения длины отрезка, который составляет при пересечении со стороной a прямой угол, можно воспользоваться следующими соотношениями: если известна сторона b и угол γ или сторона c и угол β, то h(a)=b*sinγ или h(a)=c*sinβ.
Где:
γ – угол между стороной b и a,
β – угол между стороной c и a.

Взаимосвязь с радиусом

Если исходный треугольник вписан в окружность, для определения величины высоты можно воспользоваться радиусом такой окружности. Центр ее расположен в точке, где пересекаются все 3 высоты (из каждой вершины) – ортоцентре, а расстояние от него и до вершины (любой) – радиус.

Тогда h(a)=bc/2R, где:
b, c – 2 другие стороны треугольника,
R – радиус описывающей треугольник окружности.

Найти высоту в прямоугольном треугольнике

В данном виде геометрической фигуры 2 стороны при пересечении образуют прямой угол – 90°. Следовательно, если требуется определить в нем значение высоты, то необходимо вычислить либо размер одного из катетов, либо величину отрезка, образующего с гипотенузой 90°. При обозначении:
a, b – катеты,
c – гипотенуза,
h(c) – перпендикуляр на гипотенузу.
Произвести необходимые расчеты можно с помощью следующих соотношений:

  • Пифагорова теорема:

a=√(c 2 -b 2),
b=√(c 2 -a 2),
h(c)=2S/c,т.к. S=ab/2,то h(c)=ab/c .

  • Тригонометрические функции:

a= c*sinβ,
b=c* cosβ,
h(c)=ab/c=с* sinβ* cosβ.

Найти высоту в равнобедренном треугольнике

Данная геометрическая фигура отличается наличием двух сторон равной величины и третьей – основанием. Для определения высоты, проведенной к третьей, отличной стороне, на помощь приходит теорема Пифагора. При обозначениях
a – боковая сторона,
c – основание,
h(c) – отрезок к c под углом 90°, то h(c)=1/2 √(4a 2 -c 2).


Треугольник – многоугольник с тремя сторонами, или замкнутая ломаная линия с тремя звеньями, или фигура, образованная тремя отрезками, соединяющими три точки, не лежащие на одной прямой (см. рис. 1).

Основные элементы треугольника abc

Вершины – точки A, B, и C;

Стороны – отрезки a = BC, b = AC и c = AB, соединяющие вершины;

Углы – α , β, γ образованные тремя парами сторон. Углы часто обозначают так же, как и вершины, – буквами A, B и C.

Угол, образованный сторонами треугольника и лежащий в его внутренней области, называется внутренним углом, а смежный к нему является смежным углом треугольника (2, стр. 534).

Высоты, медианы, биссектрисы и средние линии треугольника

Кроме основных элементов в треугольнике рассматривают и другие отрезки, обладающие интересными свойствами: высоты, медианы, биссектрисы исредние линии.

Высота

Высоты треугольника – это перпендикуляры, опущенные из вершин треугольника на противоположные стороны.

Для построения высоты необходимо выполнить следующие действия:

1) провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);

2) из вершины, лежащей напротив проведенной прямой, провести отрезок из точки к этой прямой, составляющий с ней угол 90 градусов.

Точка пересечения высоты со стороной треугольника называется основанием высоты (см. рис. 2).

Свойства высот треугольника

    В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному треугольнику.

    В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

    Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон.

    Три высоты в остроугольном треугольнике пересекаются в одной точке и эту точку называют ортоцентром треугольника.

Медиана

Медианы (от лат. mediana– «средняя») – это отрезки, соединяющие вершины треугольника с серединами противолежащих сторон (см. рис. 3).

Для построения медианы необходимо выполнить следующие действия:

1) найти середину стороны;

2)соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком.

Свойства медиан треугольника

    Медиана разбивает треугольник на два треугольника одинаковой площади.

    Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Биссектриса

Биссектрисами (от лат. bis – дважды» и seko – рассекаю) называют заключенные внутри треугольника отрезки прямых, которые делят пополам его углы (см. рис. 4).

Для построения биссектрисы необходимо выполнить следующие действия:

1) построить луч, выходящий из вершины угла и делящий его на две равные части (биссектрису угла);

2) найти точку пересечения биссектрисы угла треугольника с противоположной стороной;

3) выделить отрезок, соединяющий вершину треугольника с точкой пересечения на противоположной стороне.

Свойства биссектрис треугольника

    Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.

    Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.

    Биссектрисы внутреннего и внешнего углов перпендикулярны.

    Если биссектриса внешнего угла треугольника пересекает продолжение противолежащей стороны, то ADBD=ACBC.

    Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка - центр одной из трех вневписанных окружностей этого треугольника.

    Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.

    Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.

E A → ⋅ B C → + E B → ⋅ C A → + E C → ⋅ A B → = 0 {\displaystyle {\overrightarrow {EA}}\cdot {\overrightarrow {BC}}+{\overrightarrow {EB}}\cdot {\overrightarrow {CA}}+{\overrightarrow {EC}}\cdot {\overrightarrow {AB}}=0}

(Для доказательства тождества следует воспользоваться формулами

A B → = E B → − E A → , B C → = E C → − E B → , C A → = E A → − E C → {\displaystyle {\overrightarrow {AB}}={\overrightarrow {EB}}-{\overrightarrow {EA}},\,{\overrightarrow {BC}}={\overrightarrow {EC}}-{\overrightarrow {EB}},\,{\overrightarrow {CA}}={\overrightarrow {EA}}-{\overrightarrow {EC}}}

В качестве точки E следует взять пересечение двух высот треугольника.)

  • Ортоцентр изогонально сопряжен центру описанной окружности .
  • Ортоцентр лежит на одной прямой с центроидом , центром описанной окружности и центром окружности девяти точек (см. прямая Эйлера).
  • Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник .
  • Центр описанной ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
  • Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника .
  • Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности.
  • Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
  • Если О - центр описанной окружности ΔABC, то O H → = O A → + O B → + O C → {\displaystyle {\overrightarrow {OH}}={\overrightarrow {OA}}+{\overrightarrow {OB}}+{\overrightarrow {OC}}} ,
  • Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
  • Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью всегда делится окружностью Эйлера пополам. Ортоцентр есть центр гомотетии этих двух окружностей.
  • Теорема Гамильтона . Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
  • Следствия теоремы Гамильтона :
    • Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника Гамильтона , имеющих равные радиусы описанных окружностей.
    • Радиусы описанных окружностей трёх треугольников Гамильтона равны радиусу окружности, описанной около исходного остроугольного треугольника.
  • В остроугольном треугольнике ортоцентр лежит внутри треугольника; в тупоугольном - вне треугольника; в прямоугольном - в вершине прямого угла.

Свойства высот равнобедренного треугольника

  • Если в треугольнике две высоты равны, то треугольник - равнобедренный (теорема Штейнера - Лемуса), и третья высота одновременно является медианой и биссектрисой того угла, из которого она выходит.
  • Верно и обратное: в равнобедренном треугольнике две высоты равны, а третья высота одновременно является медианой и биссектрисой.
  • У равностороннего треугольника все три высоты равны.

Свойства оснований высот треугольника

  • Основания высот образуют так называемый ортотреугольник , обладающий собственными свойствами.
  • Описанная около ортотреугольника окружность - окружность Эйлера . На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.
  • Другая формулировка последнего свойства:
    • Теорема Эйлера для окружности девяти точек . Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром , все лежат на одной окружности (на окружности девяти точек ).
  • Теорема . В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.
  • Теорема . В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.

Другие свойства высот треугольника

Свойства минимальной из высот треугольника

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

  • Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
  • Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
  • При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
  • Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Основные соотношения

  • h a = b sin ⁡ γ = c sin ⁡ β , {\displaystyle h_{a}=b\sin \gamma =c\sin \beta ,}
  • h a = 2 S a , {\displaystyle h_{a}={\frac {2S}{a}},} где S {\displaystyle S} - площадь треугольника, a {\displaystyle a} - длина стороны треугольника, на которую опущена высота .
  • h a 2 = 1 2 (b 2 + c 2 − 1 2 (a 2 + (b 2 − c 2) 2 a 2)) {\displaystyle h_{a}^{2}={\frac {1}{2}}(b^{2}+c^{2}-{\frac {1}{2}}(a^{2}+{\frac {(b^{2}-c^{2})^{2}}{a^{2}}}))}
  • h a = b c 2 R , {\displaystyle h_{a}={\frac {bc}{2R}},} где b c {\displaystyle bc} - произведение боковых сторон, R − {\displaystyle R-} радиус описанной окружности
  • h a: h b: h c = 1 a: 1 b: 1 c = b c: a c: a b {\displaystyle h_{a}:h_{b}:h_{c}={\frac {1}{a}}:{\frac {1}{b}}:{\frac {1}{c}}=bc:ac:ab}
  • 1 h a + 1 h b + 1 h c = 1 r {\displaystyle {\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}={\frac {1}{r}}} , где r {\displaystyle r} - радиус вписанной окружности .
  • S = 1 (1 h a + 1 h b + 1 h c) ⋅ (1 h a + 1 h b − 1 h c) ⋅ (1 h a + 1 h c − 1 h b) ⋅ (1 h b + 1 h c − 1 h a) {\displaystyle S={\frac {1}{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}} , где S {\displaystyle S} - площадь треугольника.
  • a = 2 h a ⋅ (1 h a + 1 h b + 1 h c) ⋅ (1 h a + 1 h b − 1 h c) ⋅ (1 h a + 1 h c − 1 h b) ⋅ (1 h b + 1 h c − 1 h a) {\displaystyle a={\frac {2}{h_{a}{\cdot }{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}}} , a {\displaystyle a} - сторона треугольника к которой опускается высота h a {\displaystyle h_{a}} .
  • Высота равнобедренного треугольника , опущенная на основание: h c = 1 2 4 a 2 − c 2 , {\displaystyle h_{c}={\frac {1}{2}}{\sqrt {4a^{2}-c^{2}}},}
где c {\displaystyle c} - основание, a {\displaystyle a} - боковая сторона.

Теорема о высоте прямоугольного треугольника

Если высота в прямоугольном треугольнике A B C {\displaystyle ABC} длиной h {\displaystyle h} , проведённая из вершины прямого угла, делит гипотенузу длиной c {\displaystyle c} на отрезки m {\displaystyle m} и n {\displaystyle n} , соответствующие катетам b {\displaystyle b} и a {\displaystyle a} , то верны следующие равенства.

Урок содержит описание свойств и формулы нахождения высоты треугольника, а также примеры решения задач. Если Вы не нашли решение подходящей задачи - пишите про это на форуме . Наверняка, курс будет дополнен.

ВЫСОТА ТРЕУГОЛЬНИКА

Высота треугольника – опущенный из вершины треугольника перпендикуляр, проведенный на противолежащую вершине сторону или на ее продолжение.

Свойства высоты треугольника:

  • Если в треугольнике две высоты равны, то такой треугольник - равнобедренный
  • В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному
  • В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащих на двух сторонах, непараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины этой стороны всегда можно провести окружность
  • В остроугольном треугольнике две его высоты отсекают от него подобные треугольники
  • Минимальная высота в треугольнике всегда проходит внутри этого треугольника

Ортоцентр треугольника

Все три высоты треугольника (проведенные из трех вершин) пересекаются в одной точке, которая называется ортоцентром . Для того, чтобы найти точку пересечения высот, достаточно провести две высоты (две прямые пересекаются только в одной точке).

Расположение ортоцентра (точка О) определяется видом треугольника.

У остроугольного треугольника точка пересечения высот находится в плоскости треугольника. (Рис.1).

У прямоугольного треугольника точка пересечения высот совпадает с вершиной прямого угла (Рис.2).

У тупоугольного треугольника точка пересечения высот находится за плоскостью треугольника (Рис.3).

У равнобедренного треугольника медиана, биссектриса и высота, проведенные к основанию треугольника, совпадают.

У равностороннего треугольника все три «замечательные» линии (высота, биссектриса и медиана) совпадают и три «замечательных» точки (точки ортоцентра, центра тяжести и центра вписанной и описанной окружностей) находятся в одной точке пересечения «замечательных» линий, т.е. тоже совпадают.

ВИСОТА ТРИКУТНИКА

Висота трикутника - опущений з вершини трикутника перпендикуляр, проведений на протилежну вершині бік або на її продовження.

Всі три висоти трикутника (проведені з трьох вершин) перетинаються в одній точці, яка називається ортоцентром. Для того, щоб знайти точку перетину висот, досить провести дві висоти (дві прямі перетинаються тільки в одній точці).

Розміщення ортоцентра (точка О) визначається видом трикутника.

У гострокутного трикутника точка перетину висот знаходиться в площині трикутника. (Мал.1).

У прямокутного трикутника точка перетину висот збігається з вершиною прямого кута (Мал.2).

У тупоугольного трикутника точка перетину висот знаходиться за площиною трикутника (Мал.3).

У рівнобедреного трикутника медіана, бісектриса і висота, проведені до основи трикутника, збігаються.

У рівностороннього трикутника всі три «помітні» лінії (висота, бісектриса і медіана) збігаються і три «помітні» точки (точки ортоцентра, центру ваги і центру вписаного і описаного кіл) знаходяться в одній точці перетину «помітних» ліній, тобто теж збігаються.

Формулы нахождения высоты треугольника


Рисунок приведен для облегчения восприятия формул нахождения высоты треугольника. Общее правило - длина стороны обозначена маленькой буквой, лежащей напротив соответствующего угла. То есть сторона a лежит напротив угла A.
Высота в формулах обозначается буквой h, нижний индекс которой соответствует стороне, на которую она опущена.

Другие обозначения:
a,b,c - длины сторон треугольника
h a - высота треугольника, проведенная к стороне a из противолежащего угла
h b - высота, проведенная к стороне b
h c - высота, проведенная к стороне c
R - радиус описанной окружности
r - радиус вписанной окружности


Пояснения к формулам.
Высота треугольника равна произведению длины стороны, прилежащей к углу, из которой опущена эта высота на синус угла между этой стороной и стороной, на которую такая высота опущена (Формула 1)
Высота треугольника равна частному от деления удвоенной величины площади треугольника на длину стороны, к которой опущена эта высота (Формула 2)
Высота треугольника равна частному от деления произведения сторон, прилежащих к углу, из которого опущена эта высота, на удвоенный радиус описанной вокруг него окружности (Формула 4).
Высоты сторон в треугольнике соотносятся между собой в той же самой пропорции, как соотносятся между собой обратные пропорции длин сторон этого же треугольника, а также в той же самой пропорции между собой относятся произведения пар сторон треугольника, которые имеют общий угол (Формула 5).
Сумма обратных значений высот треугольника равна обратному значению радиуса вписанной в такой треугольник окружности (Формула 6)
Площадь треугольника можно найти через длины высот этого треугольника (Формула 7)
Длину стороны треугольника, на которую опущена высота, можно найти через применение формул 7 и 2.

Задача на .

В прямоугольном треугольнике ABC (угол C = 90 0) проведена высота CD. Определите CD, если AD = 9 см, BD = 16 см

Решение .

Треугольники ABC, ACD и CBD подобны между собой. Это непосредственно следует из второго признака подобия (равенство углов в этих треугольниках очевидно).

Прямоугольные треугольники - единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.

Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)

Треугольники ABC и CBD подобны. Значит:

AD/DC = DC/BD, то есть

Задача на применение теоремы Пифагора.

Треугольник ABC является прямоугольным. При этом C-прямой угол. Из него проведена высота CD=6см. Разность отрезков BD-AD=5 см.

Найти: Стороны треугольника ABC.

Решение .

1.Составим систему уравнений согласно теореме Пифагора

CD 2 +BD 2 =BC 2

CD 2 +AD 2 =AC 2

поскольку CD=6

Поскольку BD-AD=5, то

BD = AD+5, тогда система уравнений принимает вид

36+(AD+5) 2 =BC 2

Сложим первое и второе уравнение. Поскольку левая часть прибавляется к левой, а правая часть к правой - равенство не будет нарушено. Получим:

36+36+(AD+5) 2 +AD 2 =AC 2 +BC 2

72+(AD+5) 2 +AD 2 =AC 2 +BC 2

2. Теперь, взглянув на первоначальный чертеж треугольника, по той же самой теореме Пифагора, должно выполняться равенство:

AC 2 +BC 2 =AB 2

Поскольку AB=BD+AD, уравнение примет вид:

AC 2 +BC 2 =(AD+BD) 2

Поскольку BD-AD=5, то BD = AD+5, тогда

AC 2 +BC 2 =(AD+AD+5) 2

3. Теперь взглянем на результаты, полученные нами при решении в первой и второй части решения. А именно:

72+(AD+5) 2 +AD 2 =AC 2 +BC 2

AC 2 +BC 2 =(AD+AD+5) 2

Они имеют общую часть AC 2 +BC 2 . Таким образом, приравняем их друг к другу.

72+(AD+5) 2 +AD 2 =(AD+AD+5) 2

72+AD 2 +10AD+25+AD 2 =4AD 2 +20AD+25

2AD 2 -10AD+72=0

В полученном квадратном уравнении дискриминант равен D=676, соответственно, корни уравнения равны:

Поскольку длина отрезка не может быть отрицательной, отбрасываем первый корень.

Соответственно

AB = BD + AD = 4 + 9 = 13

По теореме Пифагора находим остальные стороны треугольника:

AC = корень из (52)

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.